System Architecture
Understanding the Vision system's layered architecture and component interactions.
Architecture Overview
┌─────────────────────────────────────────────────────────────┐
│ Shane │
└──────────────────────────┬──────────────────────────────────┘
│
┌─────────▼──────────┐
│ VAL │ Request preprocessing
│ Abstraction Layer │ Response validation
└─────────┬──────────┘ Domain routing
│
┌─────────▼──────────┐
│ Claude Code │ Core AI engine
│ (Claude Sonnet │ Tool execution
│ 4.5 VISION) │ Code operations
└─────────┬──────────┘
│
┌──────────────────┼──────────────────┐
│ │ │
┌────▼────┐ ┌─────▼─────┐ ┌─────▼──────┐
│ MCP │ │ Agent │ │ Knowledge │
│ Servers │ │ Network │ │ Database │
└─────────┘ └───────────┘ └────────────┘
Layer Breakdown
Layer 1: Request Processing (VAL)
Components:
- Preprocessor: Domain detection, context enrichment
- Domain Modules: Work, Personal, Research specialization
- Template System: Common task automation
Purpose: Enrich every request with relevant context before processing
Layer 2: Core Intelligence (Claude Code)
Components:
- Claude Sonnet 4.5: Primary reasoning engine
- Tool System: File ops, bash, search, etc.
- MCP Integration: Extended capabilities
Purpose: Execute tasks with full system access
Layer 3: Response Validation (VAL)
Components:
- Postprocessor: Output validation
- Action Triggers: Slack, Flare, screenshots
- Knowledge Ingestion: Pattern learning
Purpose: Ensure accuracy and trigger follow-up actions
Layer 4: Infrastructure
Components:
- 21 MCP Servers: Browser, search, docs, error tracking
- Agent Network: JARVIS, HEIMDALL, FRIDAY
- Databases: Knowledge DB, network DB, history
Purpose: Provide specialized capabilities and distributed intelligence
Data Flow
Request Flow
- User input → VAL preprocessor
- Domain detection (work/personal/research)
- Knowledge DB query for relevant context
- Enriched request → Claude Code
- Tool execution → Results
- Results → VAL postprocessor
- Validation + automatic actions
- Response → User
Learning Flow
- Interaction occurs
- Postprocessor extracts patterns
- Patterns → Knowledge DB
- Operational log updated
- Future requests use learned patterns
Key Design Principles
Hub-and-Spoke Agent Communication
Decision: VISION as central orchestrator Benefit: Prevents bot loops, maintains audit trail Implementation: Bot filter in agent_core.py
Domain-Based Context
Decision: Separate work/personal/research modules Benefit: Specialized protocols and knowledge per domain Implementation: Domain router in VAL preprocessor
Validation-First
Decision: All outputs validated before delivery Benefit: Ensures accuracy, prevents mistakes Implementation: VAL postprocessor with action triggers
Truth-Based
Decision: "YOU DO NOT LIE" fundamental rule Benefit: Evidence-based responses only Implementation: System prompts + audit logging
Component Dependencies
Claude Code (Core)
├── VAL (Request/Response processing)
│ ├── Knowledge DB (Context)
│ ├── Operational Log (Learnings)
│ └── Templates (Common tasks)
├── MCP Servers (Extended capabilities)
│ ├── Browser Automation (playwright, puppeteer)
│ ├── Search (duckduckgo, wikipedia)
│ ├── Docs (cloudflare, jetbrains, atlas)
│ ├── Error Tracking (flare)
│ └── Communication (slack)
└── Agent Network (Distributed intelligence)
├── JARVIS (Code validation)
├── HEIMDALL (Monitoring)
├── FRIDAY (Task execution)
└── Network DB (Shared knowledge)
Version: 3.0.0 Architecture Type: Layered with Hub-and-Spoke coordination